游客
登录
我的空间
使用说明下载
首页
神经网络与深度学习
神经网络与深度学习
扫码继续查看
《神经网络与深度学习》是江苏开放大学人工智能(本科)专业的必修课程。本课程系统地介绍深度学习的理论、应用和实践工具。首先,介绍深度学习的历史起源和发展、核心思想、主要问题等;其次,介绍深度学习所必备的机器学习基础知识,包括有监督学习、无监督学习、过度拟合、方差偏差分析等;然后,介绍深度学习的典型网络结构和优化方法,包括深度前馈神经网络、常用的优化方法和正则化、卷积神经网络(CNN)、序列模型(RNN和LSTM等)、深度生成网络(GAN等)和深度强化学习(DQN等);最后,介绍深度学习框架Pytorch的使用,带领学生动手实现基本的深度学习模型。要求学生具备高等数学和线性代数的基础知识;了解数据科学和机器学习的基本概念和算法;熟悉Python编程语言。
共151个素材
课程地图
17497
1
0
分享
全部
视频
音频
图片
PPT
文档
其他
资源(151)
时长( 08:44:45)
播放量(331264)
1-1 深度学习介绍
00:14:56
2226
1-3 典型的网络结构
00:16:40
2192
1-2 深度学习的核心思想
00:18:12
2208
1-4 应用概览
00:06:24
2116
2-1 数据科学简介
00:12:05
2163
2-4 过拟合
00:05:50
2129
2-5 模型选择
00:03:40
2228
2-3 无监督学习
00:03:22
2119
2-2 有监督学习
00:17:43
2152
3-1 神经网络与MLP
00:07:08
2140
3-3 反向传播算法
00:11:41
2223
3-4 计算图与自动求导
00:11:46
2129
3-2 神经元模型
00:10:35
2120
4-1 梯度
00:15:22
2082
4-2 动量法
00:03:32
2076
4-3 自适应学习率算法
00:06:10
2085
4-4 参数范数惩罚
00:11:24
2181
4-5 dropout
00:10:30
2073
4-6 参数初始化和参数调优
00:03:29
2052
5-1 CNN概述与基本原理
00:12:13
2205
5-2 典型CNN网络
00:17:07
2085
5-3 可视化卷积
00:04:52
2086
5-4 CNN在实际中的应用
00:14:15
2137
6-1 序列数据
00:05:18
2159
6-2 展开计算图
00:06:19
2053
6-3 RNN的设计模式
00:09:04
2080
6-4 RNN的反向传播
00:07:21
2083
6-5 各种RNN结构
00:12:58
2091
6-6 RNN的应用
00:07:59
2058
6-7 LSTM和GRU
00:17:14
2056
6-8 注意力机制
00:16:05
2065
7-1 生成模型
00:06:31
2049
7-2 基于能量的模型和玻尔兹曼机
00:05:36
2062
7-3 受限玻尔兹曼机和深度玻尔兹曼机
00:09:14
2069
7-4 自编码器和变分自编码器
00:14:08
2068
7-5 生成对抗网络
00:13:42
2067
7-6 DCGAN和WGAN
00:10:01
2061
7-7 CycleGAN
00:07:12
2064
8-1 强化学习概述
00:10:15
2082
8-5 Bellman方程
00:10:15
2082
8-7 DNQ
00:07:37
2088
8-4 MDP
00:10:45
2113
8-9 model-based
00:07:34
2080
8-6 Q-learning
00:06:17
2041
8-8 策略梯度和AC框架
00:10:23
2076
8-2 强化学习的基本元素
00:08:53
2093
8-3 值函数
00:06:13
2081
9-1 深度学习的硬件
00:14:58
2113
9-2 深度学习的框架
00:03:09
2048
9-3 Tensor操作和自动求导
00:07:27
2054
9-4 神经网络训练实例
00:11:49
2064
9-5 动态计算图和静态计算图
00:04:42
2092
9-6 数据集加载与转换
00:08:32
2071
9-7 预训练模型和总结
00:08:18
2130
1-1 深度学习介绍
/
2101
1-2 深度学习的核心思想
/
2181
1-3 典型的网络结构
/
2075
1-4 应用概览
/
2150
2-1 数据科学简介
/
2188
2-2 有监督学习
/
2060
2-3 无监督学习
/
2060
2-4 过拟合
/
2076
2-5 模型选择
/
2113
3-1 神经网络与MLP
/
2083
3-3 反向传播算法
/
2040
3-2 神经元模型
/
2042
4-1 梯度
/
2089
3-4 计算图与自动求导
/
2157
4-2 动量法
/
2123
4-3 自适应学习率算法
/
2115
4-4 参数范数惩罚
/
2092
4-5 dropout
/
2153
4-6 参数初始化和参数调优
/
2043
5-1 CNN概述与基本原理
/
2198
5-2 典型CNN网络
/
2065
5-3 可视化卷积
/
2180
5-4 CNN在实际中的应用
/
2056
6-1 序列数据
/
2057
6-2 展开计算图
/
2132
6-3 RNN的设计模式
/
2108
6-4 RNN的反向传播
/
2040
6-5 各种RNN结构
/
2037
6-6 RNN的应用
/
2050
6-7 LSTM和GRU
/
2106
6-8 注意力机制
/
2047
7-1 生成模型
/
2065
7-2 基于能量的模型和玻尔兹曼机
/
2046
7-3 受限玻尔兹曼机和深度玻尔兹曼机
/
2156
7-4 自编码器和变分自编码器
/
2209
7-5 生成对抗网络
/
2137
7-6 DCGAN和WGAN
/
2029
7-7 CycleGAN
/
2033
8-1 强化学习概述
/
2035
8-2 强化学习的基本元素
/
2025
8-3 值函数
/
2034
8-4 MDP
/
2047
8-5 Bellman方程
/
2030
8-6 Q-learning
/
2023
8-7 DNQ
/
2025
8-8 策略梯度和AC框架
/
2014
8-9 model-based
/
2016
9-1 深度学习的硬件
/
2357
9-2 深度学习的框架
/
2321
9-3 Tensor操作和自动求导
/
2036
9-4 神经网络训练实例
/
2054
9-5 动态计算图和静态计算图
/
2137
9-6 数据集加载与转换
/
2340
9-7 预训练模型和总结
/
2109
讲义1-1 深度学习介绍
/
2134
讲义1-2 深度学习的核心思想
/
2092
讲义1-3 典型的网络结构
/
2082
讲义1-4 深度学习应用概览
/
2082
讲义2-1 数据科学简介
/
2122
讲义2-2 有监督学习
/
2088
讲义2-3 无监督学习
/
2124
讲义2-4 过拟合
/
2088
讲义2-5 模型选择
/
2072
讲义2-1 数据科学简介
/
2036
讲义3-1 神经网络与MLP
/
2041
讲义3-2 神经元模型
/
2195
讲义3-3 反向传播算法
/
2208
讲义3-4 计算图与自动求导
/
2444
讲义4-2 动量法
/
2064
讲义4-3 自适应学习率算法
/
2200
讲义4-4 参数范数惩罚
/
2085
讲义4-1 梯度
/
2081
讲义4-5 Dropout
/
2099
讲义4-5 Dropout
/
2087
讲义5-1 CNN概述与基本原理
/
2155
讲义5-2 典型CNN网络
/
2072
讲义5-3 可视化卷积网络
/
2112
讲义6-1 循环序列模型
/
2054
讲义6-2 自然语言处理与词嵌入
/
2110
讲义6-3 序列模型和注意力机制
/
2143
讲义7-1 生成模型
/
2089
讲义7-2 基于能量的模型和玻尔兹曼机
/
2902
讲义7-3 受限玻尔兹曼机
/
3070
讲义7-4 自编码器和变分自编码器
/
2963
讲义7-5 生成对抗网络
/
2965
讲义7-6 DCGAN和WGAN
/
2897
讲义7-7 CycleGAN原理以及代码全解析
/
2915
讲义8-1 强化学习概述
/
3097
讲义8-2 强化学习求解方法
/
2970
讲义8-3 强化学习算法分类
/
2960
讲义8-4 强化学习的代表性算法
/
2928
讲义8-5 强化学习应用
/
2951
讲义9-1 深度学习的软硬件
/
2960
讲义9-2 深度学习的框架
/
2917
讲义9-3 Tensor操作和自动求导
/
2929
讲义9-4 动态计算图和静态计算图
/
2897
讲义9-5 编写自定义数据集,数据加载器和转换
/
2889
创建者
wuqiang
上传:222份资源
创建:3个课程
暂无
更多
详细信息
所属分类:
江开本科 - 人工智能(本科)
人群:
青少年
知识体系:
信息技术
-
工学
主持人:
吴强
主讲老师:
朱占星
版权归属:
江苏开放大学版权
项目编码:
关键词
神经网络 深度学习 人工智能
创建于:2021-08-27
最近更新:2021-08-27